
Version 1.0.10

Welcome
Hack the Planet!

• Eijah

• Cave Twink

Introductions

0xAA856A1BA814AB99FFDEBA6AEFBE1C04

3

• Verify that you have the following:
• A laptop with x86-64 instructions, Wi-Fi, and support for bridged mode

network adapters (if using VM)
• VirtualBox installed (potential issues with Secure Boot enabled Linux hosts)
• The Hacker VPN workshop files

• PDF presentation
• Linux Virtual Image

• If you don’t have the workshop files, we have copies available on USB.
You can also connect to the DEF CON Wi-Fi and download from
https://codesiren.com/defcon33
• This is the only time at DEF CON that you can trust a USB
• The website also has instructions for alternative deployments

• NOTE! The code and compilation was only tested on Debian 12

• Cave Twink will help you get setup at this time

Prerequisites

4

https://codesiren.com/defcon33

• Create a Hacker VPN
• Write C++ code

• Use TCP and UDP sockets

• Use the Linux TUN interface (/dev/net/tun)

• Use 100% CNSA Suite 2.0 PQC cryptography with OpenSSL and CRYSTALS

• Network routing

• Discuss advanced topics like packet sharding, random noise injection,
multi-hop routing, and anonymity

• Come up with new ways to use the code

Workshop Goals

5

• In your opinion, what is a Hacker VPN?
• A Virtual Private Network (VPN)?

• A Post Quantum Computing (PQC) end-to-end-encrypted network (E2EE)?

• An anonymous routing protocol like The Onion Routing project (Tor)?

• Software that supports random noise injection, multi-hop routing, packet
sharding, and 100% anonymity between network endpoints?

• A hands-on workshop to build a custom tool to replace legacy VPNs?

• A lightweight, self-hosted and easily deployed and maintained application
that can run on low-end hardware such as shared VPS instances and
embedded devices?

Exercise: Ice Breaker

6

Client Lesson 0
Setup & Configuration

• Connect to the wireless network

• Mount the Linux virtual image

• Discuss the different ways you can participate in
the workshop

Lesson Goals

8

• Connect to the wireless network. Please don’t hack the wireless
networks during the workshop. Ty! <3

• Hacker VPN Network
• Network Name (SSID): Your_Own_VPN

• Password: Strong!PQC

• LAN: 172.16.0.0/12

• Go to http://172.16.0.3
• Used to see your Source IP when testing lessons

• Green, you are going through the VPN server

• Red, you are not

Wireless Network

9

http://172.16.0.3/

• Locate the Hacker_VPN.zip file on your machine and extract it

• Open VirtualBox and navigate to File > Preferences

• Change to advanced (if not already set) and click OK

• Go to File > Import Appliance and select the Hacker_VPN.ova as the
source

• On the import dialogue that appears, you can expand Settings and
modify the CPU and RAM if needed for your machine

• CPU is set for 4 cores and 4096 MB of RAM by default for a
better experience, but you can decrease by half or increase
if needed

• Click Finish

Linux Virtual Machine (VirtualBox)

10

• Select the Hacker_VM in VirtualBox and click Settings; navigate to
Network

• You should see an “Attached to:” option under the Adapter 1 tab

• Use the dropdown to select “Bridged Adapter”

• In the Name field that appears; select your active Wi-Fi adapter

• Click OK to apply

• Now you can start the “Hacker_VPN” virtual machine

• Login with:

• User: user

• Password: defcon33

Linux Virtual Machine (VirtualBox cont.)

11

• As mentioned before, this workshop is designed around the x86-64 instruction
set and using a Bridged mode network adapter. The instructions below are
suggestions to get you in the right direction and not a full guide

• If using Mac
• You can use UTM to emulate x86-64

• Create an x86-64 emulated VM.

• Use the qcow2 file from https://codesiren.com/defcon33/ as the disk

• Configure the appropriate CPU/RAM and Bridged mode network adapter

• If using Linux
• Secure Boot causes issues with bridged mode adapters in VirtualBox

• Recommend installing the dependencies and not using a VM or downloading the
qcow2 disk and creating a KVM machine. Note, our code was only tested on
Debian 12
• If creating a VM verify CPU/RAM and Bridged mode network adapter

• Cave Twink will assist as possible, but you might need to follow
along without compiling

Linux Virtual Machine (Other)

12

https://codesiren.com/defcon33/

• You can progress in a variety of ways. In each lesson folder there is a main.cpp
and solution.cpp file

• The main.cpp file is used to create your code in

• You can also use the example code in solution.cpp

• If you want to always build the solution, you can optionally set a variable for
this

• To set, open /defcon/code/CMakeLists.txt

• Change line 11 “set(DEFCON_SOLUTION off)” from off to on

• In /defcon you will find two scripts (client and server). The scripts will be run
later in the appropriate lessons

• If you encounter issues, remember Cave Twink can assist

Additional Information

13

Client Lesson 1
Hello, Hacker World!

Lesson Goals
• Learn about the Workshop code base

• Verify that you have your build environment setup correctly

• Print out “Hello, Hacker World!” to the screen

• Use a variety of tools
• Debian Linux
• C++ programming language
• Boost Libraries (especially ASIO)
• The GNU Compiler
• CMake & Ninja build systems
• OpenSSL (Includes PQC algorithms as of 3.5.0)
• CRYSTALS PQC reference algorithms

• Dilithium (ML-DSA-87)
• Kyber (ML-KEM-1024)

15

Lesson Exercise
• Open VS Code - Applications > Development > Visual Studio Code

• Navigate to the /defcon/code/client/client_lesson_1 folder

• Modify main_1.cpp
• If you need help with the lesson, take a look at solution_1.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_1

16

Client Lesson 2
UDP Sockets

Lesson Goals
• Learn about User Datagram Protocol (UDP)

• Parse command-line arguments

• Write to a UDP socket

• Read from a UDP socket

18

• UDP is a stateless protocol

• Message-oriented protocol

• Popular for time-sensitive applications

• Fire-and-forget, connectionless protocol with minimal error-checking

• Header Size: 20 bytes (IP) + 8 bytes (UDP)

• Max datagram size: 2^16 (65,536 bytes)

• Maximum Transmission Unit (MTU) problem (1500 – 28 bytes)

User Datagram Protocol (UDP)

19

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_2 folder

• Modify main_2.cpp
• If you need help with the lesson, take a look at solution_2.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_2 <server_endpoint> <message>
• Server endpoint is 172.16.0.2:2000

• Message needs to be enclosed in quotes if it contains spaces

20

Client Lesson 3
TUN Interface

Lesson Goals
• Learn about TUN/TAP interfaces

• Setup Linux routing rules

• Create a TUN interface

• Read from the TUN interface

• Print out the size of packets as they flow through the TUN interface

22

Lesson Exercise
• Navigate to the /defcon folder

• Run: sudo ./client.sh create
• Write down your LAN and TUN (pqc0) addresses for later.

• If you need this info again, you can run: ip addr

• You should not need to undo the changes, but you can with: sudo ./client.sh cleanup

• Navigate to the /defcon/code/client/client_lesson_3 folder

• Modify main_3.cpp
• If you need help with the lesson, take a look at solution_3.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_3 <tun_address>
• TUN address is the address of the pqc0 adapter (10.x.y.z)23

Client Lesson 4
TUN Interface + UDP Sockets

Lesson Goals
• Learn about TUN addresses and why they are important for VPNs

• Create a TUN interface

• Read from the TUN interface

• Write to the UDP socket

• Read from the UDP socket

• Write back to the TUN interface

25

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_4 folder

• Modify main_4.cpp
• If you need help with the lesson, take a look at solution_4.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_4 <server_endpoint> <tun_address> <lan_address>
• Server endpoint is 172.16.0.2:4000

• TUN address is the address of the pqc0 adapter (10.x.y.z)

• LAN address is the address of the LAN adapter (172.x.y.z)

26

Client Lesson 5
TCP Sockets

Lesson Goals
• Learn about Transmission Control Protocol (TCP)

• Connect to a TCP socket

• Write to a TCP socket

• Read from a TCP socket

28

• Stream-oriented protocol

• Popular for most applications

• Connection-oriented, reliable, flow & congestion control, ordered,
retransmission

• Runtime & bandwidth overhead compared to UDP

• Header size: 20 bytes (IP) + 20-60 bytes (TCP) = 40-80 bytes (a lot)

Transmission Control Protocol (TCP)

29

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_5 folder

• Modify main_5.cpp
• If you need help with the lesson, take a look at solution_5.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_5 <server_endpoint> <message>
• Server endpoint is 172.16.0.2:5000

• Message needs to be enclosed in quotes if it contains spaces

30

Client Lesson 6
Post Quantum Cryptography (PQC)

Lesson Goals
• Learn about Post-Quantum Cryptography (PQC) algorithms

• Dilithium Digital Signature Algorithm (DSA)

• Kyber Key Encapsulation Mechanism (KEM), SHA512

• Advanced Encryption Standard with Galois/Counter Mode (AES-256 GCM)

• Sign/Verify with Dilithium

• Encap/Decap with Kyber

• Encrypt/Decrypt with AES-256 in GCM mode

• SHA-512 hash

• Base16 encode/decode

32

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_6 folder

• Modify main_6.cpp
• If you need help with the lesson, take a look at solution_6.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_6

33

Client Lesson 7
PQC Handshake

Lesson Goals
• Learn about CNSA Suite 2.0 compliance

• Design a simple PQC handshake protocol
• Request, Response

• Generate a PQC request handshake
• TUN address, Dilithium persistent keys, Kyber ephemeral keys, message

signature

• Simulate a PQC response handshake
• Cryptographic message verification, Kyber encap

• Consume the PQC response
• Message verification, Kyber decap, Derive shared AES-256 key

35

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_7 folder

• Modify main_7.cpp
• If you need help with the lesson, take a look at solution_7.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_7

36

Client Lesson 8
PQC Handshake + TCP Sockets

Lesson Goals
• Connect to a TCP socket

• Write PQC handshake request to a TCP socket

• Read PQC handshake response from a TCP socket

• Derive a shared AES-256 key

38

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_8 folder

• Modify main_8.cpp
• If you need help with the lesson, take a look at solution_8.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_8 <server_endpoint> <tun_address>
• Server endpoint is 172.16.0.2:8000

• TUN address is the address of the pqc0 adapter (10.x.y.z)

39

Client Lesson 9
PQC Handshake + TCP/UDP Sockets

Lesson Goals
• TCP socket

• Connect to TCP socket, write PQC handshake request to TCP socket, read PQC
handshake response from TCP socket, verify signature, derive AES-256 key

• TUN Interface
• Read from TUN interface, encrypt data with AES-256, prepend 4 byte ID to

encrypted message, write to UDP socket

• UDP Socket
• Read from UDP socket, decrypt data with AES-256, write to TUN interface

41

Lesson Exercise
• Navigate to the /defcon/code/client/client_lesson_9 folder

• Modify main_9.cpp
• If you need help with the lesson, take a look at solution_9.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./client_lesson_9 <server_endpoint> <tun_address> <lan_address>
• Server endpoint is 172.16.0.2:9000

• TUN address is the address of the pqc0 adapter (10.x.y.z)

• LAN address is the address of the LAN adapter (172.x.y.z)

42

Server Lesson 2
UDP Sockets

Lesson Exercise
• Navigate to the /defcon/code/server/server_lesson_2 folder

• Modify main_2.cpp
• If you need help with the lesson, take a look at solution_2.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./server_lesson_2 <port>
• Port should be 2000

44

Server Lesson 4
TUN Interface + UDP Sockets

Lesson Exercise
• Navigate to the /defcon folder

• Run sudo ./server.sh create
• To remove, run sudo ./server.sh cleanup

• Navigate to the /defcon/code/server/server_lesson_4 folder

• Modify main_4.cpp
• If you need help with the lesson, take a look at solution_4.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./server_lesson_4 <port> <tun_address>
• Port should be 4000
• TUN address should be 10.0.0.1

46

Server Lesson 5
TCP Sockets

Lesson Exercise
• Navigate to the /defcon/code/server/server_lesson_5 folder

• Modify main_5.cpp
• If you need help with the lesson, take a look at solution_5.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./server_lesson_5 <port>
• Port should be 5000

48

Server Lesson 8
PQC Handshake + TCP Sockets

Lesson Exercise
• Navigate to the /defcon/code/server/server_lesson_8 folder

• Modify main_8.cpp
• If you need help with the lesson, take a look at solution_8.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./server_lesson_8 <port>
• Port should be 8000

50

Server Lesson 9
PQC Handshake + TCP/UDP Sockets

Lesson Exercise
• Navigate to the /defcon/code/server/server_lesson_9 folder

• Modify main_9.cpp
• If you need help with the lesson, take a look at solution_9.cpp

• Navigate to the /defcon/code folder

• Run ./build.sh
• If you need to clean the project, run ./clean.sh

• Navigate to the /defcon/bin folder

• Run ./server_lesson_9 <port> <tun_address>
• Port should be 9000

• TUN address should be 10.0.0.1

52

Advanced Lesson
1337 H4x0r Stuff

Lesson Goals
• Random Noise Injection

• Multi-hop Routing

• Packet Sharding

• Anonymity

54

• There are 2 types of random noise injection
• Incremental noise to existing packets
• New packets made up of 100% noise

• Random noise packets can be
• Variable or fixed-sized packets
• Variable packets need to discern between message and noise bytes
• Fixed-size is simpler, wastes bandwidth, but is arguably more secure (Variable

Bitrate - VBR)

• Message Design
• Use a secure source of randomness (OpenSSL RAND_bytes)
• Incorporate optional random noise into the protocol

• message = tun_address | cipher_text
• cipher_text = message_size | message | random_noise (optional)

Random Noise Injection

55

• Traffic Routing
• Traffic doesn’t need to pass directly from the client to the server

• There can be relays (intermediate nodes) between clients and servers

• There can be multiple servers (TUN IP uniqueness problem)

• Relays
• Can be intelligent or simple pass-throughs

• Can redirect traffic directly to servers or hop to 1:N relays

• Unwinding the response is the tricky part (TUN IP to UDP endpoint mappings)

• Advanced
• Hop TTL

• Encrypted client-to-relay, relay-to-relay, and relay-to-server

• Prevent reentrancy

Multi-hop Routing

56

• Can mean two different things:
• Spreading packets across multiple nodes

• Breaking packets up into sub-packet units for network dissemination

• Connection-oriented Protocols
• TUN-IP uniqueness problem

• Difficult to shard across N servers

• Exit node termination is tricky

Packet Sharding

57

• 2 Different Types of Anonymity
• Clients never send VPN encrypted traffic directly to servers
• Clients never communicate directly to servers

• Different Types of Relays
• Perform point-to-point pass-through
• Perform encryption and point-to-point redirection

• TUN IP Uniqueness
• Clients must be unique to the servers
• Clients must lease a TUN IP address (10.x.y.z)

• True Anonymity
• Achieved via initial out-of-band handshakes between clients and servers
• Achieved via initial out-of-band lease of unique TUN IP
• Future rekeying can be done via ratchetting of the encryption keys

Anonymity

58

Summary
"It's in that place I put that thing that one time"

— Hackers, The Phantom Phreak

• The Internet is a dangerous place

• But it's much safer when we take control

• What are the possible uses of your Hacker VPN?

• What are your ideas?

Knowledge is Pwnage

60

• This workshop is for educational purposes. The Hacker VPN
has been simplified and there are some critical limitations

• Routing vs Packet Filter (aka Kill Switch)

• DNS Leaks

• Simple Session Handling

• Multi-Platform

• CGNAT punching

Potential Concerns

61

• How do I learn how to become an awesome programmer?
• The best way to learn is to do

• Open source communities, online resources, books, etc.

• Remember… you’re hackers… you can do anything!

• Thanks for spending the day with us!

• We hope you’ve enjoyed this DEF CON workshop

• Cave Twink & I do this for you. <3

Next Steps

62

https://www.codesiren.com

(we’re hiring)

Check us out…

63

https://www.codesiren.com/

• https://www.debian.org

• https://gcc.gnu.org

• https://www.boost.org

• https://cmake.org

• https://openssl.org

• https://pq-crystals.org

• https://en.wikipedia.org/wiki/Key_encapsulation_mechanism

• https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

• https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

References

64

https://www.debian.org/
https://www.debian.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.boost.org/
https://www.boost.org/
https://cmake.org/
https://cmake.org/
https://openssl.org/
https://openssl.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://en.wikipedia.org/wiki/Key_encapsulation_mechanism
https://en.wikipedia.org/wiki/Key_encapsulation_mechanism
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

	Slide 1
	Slide 2: Welcome
	Slide 3: Introductions
	Slide 4: Prerequisites
	Slide 5: Workshop Goals
	Slide 6: Exercise: Ice Breaker
	Slide 7: Client Lesson 0
	Slide 8: Lesson Goals
	Slide 9: Wireless Network
	Slide 10: Linux Virtual Machine (VirtualBox)
	Slide 11: Linux Virtual Machine (VirtualBox cont.)
	Slide 12: Linux Virtual Machine (Other)
	Slide 13: Additional Information
	Slide 14: Client Lesson 1
	Slide 15: Lesson Goals
	Slide 16: Lesson Exercise
	Slide 17: Client Lesson 2
	Slide 18: Lesson Goals
	Slide 19: User Datagram Protocol (UDP)
	Slide 20: Lesson Exercise
	Slide 21: Client Lesson 3
	Slide 22: Lesson Goals
	Slide 23: Lesson Exercise
	Slide 24: Client Lesson 4
	Slide 25: Lesson Goals
	Slide 26: Lesson Exercise
	Slide 27: Client Lesson 5
	Slide 28: Lesson Goals
	Slide 29: Transmission Control Protocol (TCP)
	Slide 30: Lesson Exercise
	Slide 31: Client Lesson 6
	Slide 32: Lesson Goals
	Slide 33: Lesson Exercise
	Slide 34: Client Lesson 7
	Slide 35: Lesson Goals
	Slide 36: Lesson Exercise
	Slide 37: Client Lesson 8
	Slide 38: Lesson Goals
	Slide 39: Lesson Exercise
	Slide 40: Client Lesson 9
	Slide 41: Lesson Goals
	Slide 42: Lesson Exercise
	Slide 43: Server Lesson 2
	Slide 44: Lesson Exercise
	Slide 45: Server Lesson 4
	Slide 46: Lesson Exercise
	Slide 47: Server Lesson 5
	Slide 48: Lesson Exercise
	Slide 49: Server Lesson 8
	Slide 50: Lesson Exercise
	Slide 51: Server Lesson 9
	Slide 52: Lesson Exercise
	Slide 53: Advanced Lesson
	Slide 54: Lesson Goals
	Slide 55: Random Noise Injection
	Slide 56: Multi-hop Routing
	Slide 57: Packet Sharding
	Slide 58: Anonymity
	Slide 59: Summary
	Slide 60: Knowledge is Pwnage
	Slide 61: Potential Concerns
	Slide 62: Next Steps
	Slide 63: Check us out…
	Slide 64: References

