155727 19510

Version 1.0.10

o A
u Ay
If II)M.’.. ,')\‘
Wy
-

1 PLAYER
G- = 200 PLAYERS

\

Welcome
Hack the Planet!

&

Introductions

* Eijah
e Cave Twink

Q Q) @ (R saveo nm

OxAA856A1BA814AB99FFDEBAG6AEFBE1CO4

Prerequisites

* Verify that you have the following:

* A laptop with x86-64 instructions, Wi-Fi, and support for bridged mode
network adapters (if using VM)

* VirtualBox installed (potential issues with Secure Boot enabled Linux hosts)
* The Hacker VPN workshop files

* PDF presentation

* Linux Virtual Image

* If you don’t have the workshop files, we have copies available on USB.
You can also connect to the DEF CON Wi-Fi and download from
https://codesiren.com/defcon33

* This is the only time at DEF CON that you can trust a USB

* The website also has instructions for alternative deployments
* NOTE! The code and compilation was only tested on Debian 12

e Cave Twink will help you get setup at this time

https://codesiren.com/defcon33

——

oo

®

=y Workshop Goals

* Create a Hacker VPN
* Write C++ code
e Use TCP and UDP sockets
e Use the Linux TUN interface (/dev/net/tun)

* Use 100% CNSA Suite 2.0 PQC cryptography with OpenSSL and CRYSTALS
* Network routing

* Discuss advanced topics like packet sharding, random noise injection,
multi-hop routing, and anonymity

e Come up with new ways to use the code

Exercise: Ice Breaker

* In your opinion, what is a Hacker VPN?
e A Virtual Private Network (VPN)?
e A Post Quantum Computing (PQC) end-to-end-encrypted network (E2EE)?
 An anonymous routing protocol like The Onion Routing project (Tor)?

e Software that supports random noise injection, multi-hop routing, packet
sharding, and 100% anonymity between network endpoints?

* A hands-on workshop to build a custom tool to replace legacy VPNs?

* A lightweight, self-hosted and easily deployed and maintained application
that can run on low-end hardware such as shared VPS instances and
embedded devices?

7 XO.
¥

Client Lesson O
Setup & Configuration

Lesson Goals

==
g
VPN

 Connect to the wireless network Mac os:

* Mount the Linux virtual image (Tﬁi% - & o)
&b @

Can you install this Nooooo, i can't! this
5 year old program? programis too old!

Windows:

* Discuss the different ways you can participate in
the workshop

|
Can you install this Yes, i can!
25 year old program? Installing... done!
Linux

can you install this jt's already

25 year old

program installed

——

oo

®

=¥ \Wireless Network

e Connect to the wireless network. Please don’t hack the wireless
networks during the workshop. Ty! <3

* Hacker VPN Network
 Network Name (SSID): Your_ Own_VPN
e Password: Strong!PQC

* Used to see your Source IP when testing lessons
* Green, you are going through the VPN server

* Red, you are not
) '—%

Client Lesson Servers

http://172.16.0.3/

——

oo

®

=¥ Linux Virtual Machine (VirtualBox)

* Locate the Hacker VPN.zip file on your machine and extract it

* Open VirtualBox and navigate to File > Preferences
* Change to advanced (if not already set) and click OK

* Go to File > Import Appliance and select the Hacker VPN.ova as the
source

* On the import dialogue that appears, you can expand Settings and
modify the CPU and RAM if needed for your machine

e CPU is set for 4 cores and 4096 MB of RAM by default for a
better experience, but you can decrease by half or increase
if needed

Permission FEESS '
Denied

Open your eyes

udoers file.

* Click Finish Nl e

10

11

—

oo

®

=¥ Linux Virtual Machine (VirtualBox cont.)

e Select the Hacker VM in VirtualBox and click Settings; navigate to
Network

* You should see an “Attached to:” option under the Adapter 1 tab
e Use the dropdown to select “Bridged Adapter”

* In the Name field that appears; select your active Wi-Fi adapter
* Click OK to apply

* Now you can start the “Hacker VPN” virtual machine

#1 AM ROOT! _

* Login with:
* User: user

e Password: defcon33

12

Linux Virtual Machine (Other)

==
g
VPN

* As mentioned before, this workshop is designed around the x86-64 instruction

set and using a Bridged mode network adapter. The instructions below are
suggestions to get you in the right direction and not a full guide

* If using Mac

* You can use UTM to emulate x86-64
* Create an x86-64 emulated VM.
* Use the qcow? file from https://codesiren.com/defcon33/ as the disk

» Configure the appropriate CPU/RAM and Bridged mode network adapter
* If using Linux
e Secure Boot causes issues with bridged mode adapters in VirtualBox

 Recommend installing the dependencies and not using a VM or downloading the
%c%wz dlizk and creating a KVM machine. Note, our code was only tested on
ebian

* If creating a VM verify CPU/RAM and Bridged mode network adapter

e Cave Twink will assist as possible, but you might need to follow
along without compiling

https://codesiren.com/defcon33/

13

Additional Information

You can progress in a variety of ways. In each lesson folder there is a main.cpp
and solution.cpp file

The main.cpp file is used to create your code in
You can also use the example code in solution.cpp

If you want to always build the solution, you can optionally set a variable for
this

 To set, open /defcon/code/CMakelLists.txt

e Changeline 11 “set(DEFCON_SOLUTION off)” from off to on

In /defcon you will find two scripts (client and server). The scripts will be run
later in the appropriate lessons

If you encounter issues, remember Cave Twink can assist

——p—
e -

)4

®

A
VPN

Client Lesson 1
Hello, Hacker World!

-

15

Lesson Goals

* Learn about the Workshop code base
* Verify that you have your build environment setup correctly
* Print out “Hello, Hacker World!” to the screen

e Use a variety of tools
e Debian Linux
e C++ programming language
Boost Libraries (especially ASIO)
The GNU Compiler
CMake & Ninja build systems
OpenSSL (Includes PQC algorithms as of 3.5.0)

CRYSTALS PQC reference algorithms
e Dilithium (ML-DSA-87)
* Kyber (ML-KEM-1024)

16

——

SXT

®

=¥ Lesson Exercise

* Open VS Code - Applications > Development > Visual Studio Code
* Navigate to the /defcon/code/client/client lesson 1 folder
* Modify main_1.cpp

* |f you need help with the lesson, take a look at solution_1.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh

* Navigate to the /defcon/bin folder
* Run ./client_lesson 1

Client Lesson 2
UDP Sockets

@ Lesson Goals

* Learn about User Datagram Protocol (UDP)

e Parse command-line arguments
e Write to a UDP socket
 Read from a UDP socket

I'd like to
tell you
Wanna hear
EuiIeu a UDP joke?
prabablg

wouldn't get it

Who's there?

19

——

SXT

®

=¥ User Datagram Protocol (UDP)

 UDP is a stateless protocol

* Message-oriented protocol

* Popular for time-sensitive applications

* Fire-and-forget, connectionless protocol with minimal error-checking
* Header Size: 20 bytes (IP) + 8 bytes (UDP)

* Max datagram size: 2716 (65,536 bytes)

 Maximum Transmission Unit (MTU) problem (1500 — 28 bytes)

Destination Port

Source Port

Length

|

UDP
Header

20

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 2 folder
* Modify main_2.cpp
* |f you need help with the lesson, take a look at solution_2.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./client_lesson 2 <server _endpoint> <message>
e Server endpoint is 172.16.0.2:2000
* Message needs to be enclosed in quotes if it contains spaces

——p—
e -

)4

®

A
VPN

Client Lesson 3
TUN Interface

VPN

22

——

oo

®

=¥ | esson Goals

* Learn about TUN/TAP interfaces
e Setup Linux routing rules

* Create a TUN interface

* Read from the TUN interface

* Print out the size of packets as they flow through the TUN interface

network interface
(tap0)

Linux Kernel

TUN/TAP Device

- -O file descriptor

Application

Lesson Exercise

* Navigate to the /defcon folder

Run: sudo ./client.sh create
e Write down your LAN and TUN (pgc0) addresses for later.
* If you need this info again, you can run: ip addr
* You should not need to undo the changes, but you can with: sudo ./client.sh cleanup

Navigate to the /defcon/code/client/client_lesson 3 folder

Modify main_3.cpp

* If you need help with the lesson, take a look at solution_3.cpp

Navigate to the /defcon/code folder
Run ./build.sh

* If you need to clean the project, run ./clean.sh
Navigate to the /defcon/bin folder

Run ./client_lesson_3 <tun_address>
23 TUN address is the address of the pgcO adapter (10.x.y.z)

Client Lesson 4
TUN Interface + UDP Sockets

25

——

SXT

®

=¥ | esson Goals

* Learn about TUN addresses and why they are important for VPNs
* Create a TUN interface

* Read from the TUN interface

* Write to the UDP socket

* Read from the UDP socket

* Write back to the TUN interface

PROTOCOL

26

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 4 folder
* Modify main_4.cpp

* |f you need help with the lesson, take a look at solution_4.cpp
* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./client_lesson_4 <server_endpoint> <tun_address> <lan_address>
e Server endpoint is 172.16.0.2:4000

 TUN address is the address of the pqcO adapter (10.x.y.z)
* LAN address is the address of the LAN adapter (172.x.y.z)

Client Lesson 5

TCP Sockets

(1) SYN = P E—
.) €&—— (2) SYN/ACK — T

/) Ack S I. — .|
Worker Server

28

Lesson Goals

e Learn about Transmission Control Protocol (TCP)
* Connect to a TCP socket

* Write to a TCP socket

* Read from a TCP socket

LIQUID

ANTISEPTIC
Phenol 0.175% wlv and
Halogenated Phenols 0.68% wiv

Soothes Pain,
Fights Infection

For sore throats,
mouth ulcers, cuts, grazes,
bites, stings & spots

QRoOVE TCAIN0I112v)

200ml

29

——

oo

Transmission Control Protocol (TCP)

e Stream-oriented protocol
e Popular for most applications

* Connection-oriented, reliable, flow & congestion control, ordered,
retransmission

* Runtime & bandwidth overhead compared to UDP
* Header size: 20 bytes (IP) + 20-60 bytes (TCP) = 40-80 bytes (a lot)

| —

30

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 5 folder
* Modify main_5.cpp
* |f you need help with the lesson, take a look at solution_5.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./client _lesson 5 <server endpoint> <message>
e Server endpoint is 172.16.0.2:5000
* Message needs to be enclosed in quotes if it contains spaces

——

oo

®

=¥ | esson Goals

* Learn about Post-Quantum Cryptography (PQC) algorithms
* Dilithium Digital Signature Algorithm (DSA)
* Kyber Key Encapsulation Mechanism (KEM), SHA512
e Advanced Encryption Standard with Galois/Counter Mode (AES-256 GCM)

e Sign/Verify with Dilithium
* Encap/Decap with Kyber

* Encrypt/Decrypt with AES-256 in GCM mode ! r
» SHA-512 hash \ Bk
e Basel6 encode/decode ()

\&J
:

\ Decrypt(sk, ¢) /

32

en

33

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 6 folder
* Modify main_6.cpp

* |f you need help with the lesson, take a look at solution_6.cpp
* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder
* Run ./client_lesson 6

Client Lesson 7
PQC Handshake

35

Lesson Goals

* Learn about CNSA Suite 2.0 compliance

e Design a simple PQC handshake protocol
* Request, Response

* Generate a PQC request handshake

 TUN address, Dilithium persistent keys, Kyber ephemeral keys, message
signature

e Simulate a PQC response handshake
* Cryptographic message verification, Kyber encap

* Consume the PQC response
* Message verification, Kyber decap, Derive shared AES-256 key

36

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 7 folder
* Modify main_7.cpp

* |f you need help with the lesson, take a look at solution_7.cpp
* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder
* Run ./client_lesson_7

Client Lesson 8

PQC Handshake + TCP Sockets

=

38

—

oo

®

=¥ | esson Goals

* Connect to a TCP socket

* Write PQC handshake request to a TCP socket

* Read PQC handshake response from a TCP socket
* Derive a shared AES-256 key

39

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson_ 8 folder
* Modify main_8.cpp
* |f you need help with the lesson, take a look at solution_8.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./client_lesson 8 <server _endpoint> <tun_address>
e Server endpoint is 172.16.0.2:8000
 TUN address is the address of the pqcO adapter (10.x.y.z)

"2020 will be the end of the handshake"
TCP/IP:

Client Lesson 9
PQC Handshake + TCP/UDP Sockets

UDP TCP

41

Lesson Goals

e TCP socket

* Connect to TCP socket, write PQC handshake request to TCP socket, read PQC
handshake response from TCP socket, verify signature, derive AES-256 key

e TUN Interface

 Read from TUN interface, encrypt data with AES-256, prepend 4 byte ID to
encrypted message, write to UDP socket

* UDP Socket
* Read from UDP socket, decrypt data with AES-256, write to TUN interface

TCP UDP

42

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/client/client lesson 9 folder
* Modify main_9.cpp

* |f you need help with the lesson, take a look at solution_9.cpp
* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./client_lesson_9 <server_endpoint> <tun_address> <lan_address>
e Server endpoint is 172.16.0.2:9000

 TUN address is the address of the pqcO adapter (10.x.y.z)
* LAN address is the address of the LAN adapter (172.x.y.z)

erver Lesson
UDP Sockets

44

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/server/server lesson 2 folder
* Modify main_2.cpp
* |f you need help with the lesson, take a look at solution_2.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./server lesson 2 <port>
* Port should be 2000

Server Lesson 4
TUN Interface + UDP Sockets

:
P i —N

S

PlayStation servers::

46

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon folder
 Run sudo ./server.sh create
* To remove, run sudo ./server.sh cleanup
* Navigate to the /defcon/code/server/server lesson 4 folder
* Modify main_4.cpp

* |f you need help with the lesson, take a look at solution_4.cpp
* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./server_lesson_4 <port> <tun_address>
e Port should be 4000
e TUN address should be 10.0.0.1

Server Lesson 5
TCP Sockets

A

AL s .";ms\', A il
| TURN'SERVERS ONAND I'TURN THEM OFF
VRN 8 e

48

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/server/server lesson 5 folder
* Modify main_5.cpp
* |f you need help with the lesson, take a look at solution_5.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

e Run ./server lesson 5 <port>
* Port should be 5000

Server Lesson 8
PQC Handshake + TCP Sockets

NOT THE CODE. THE SERVER 1S
. . OVERLOADED.

50

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/server/server lesson 8 folder
* Modify main_8.cpp
* |f you need help with the lesson, take a look at solution_8.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./server lesson 8 <port>
* Port should be 8000

Server Lesson 9
PQC Handshake + TCP/UDP Sockets

¢ = \l’,;

52

——

oo

®

=¥ Lesson Exercise

* Navigate to the /defcon/code/server/server lesson 9 folder
* Modify main_9.cpp
* |f you need help with the lesson, take a look at solution_9.cpp

* Navigate to the /defcon/code folder
e Run ./build.sh

* If you need to clean the project, run ./clean.sh
* Navigate to the /defcon/bin folder

* Run ./server lesson 9 <port> <tun_address>
e Port should be 9000
e TUN address should be 10.0.0.1

Advanced Lesson
1337 H4xOr Stuff

l'I.ENS |

54

——

oo

®

=¥ | esson Goals

 Random Noise Injection
e Multi-hop Routing

* Packet Sharding

* Anonymity

55

Random Noise Injection

* There are 2 types of random noise injection
* Incremental noise to existing packets
* New packets made up of 100% noise

* Random noise packets can be
 Variable or fixed-sized packets
 Variable packets need to discern between message and noise bytes

* Fixed-size is simpler, wastes bandwidth, but is arguably more secure (Variable
Bitrate - VBR)

* Message Design
e Use a secure source of randomness (OpenSSL RAND _bytes)

* Incorporate optional random noise into the protocol
* message = tun_address | cipher_text
* cipher_text = message_size | message | random_noise (optional)

56

Multi-hop Routing

==
g
VPN

* Traffic Routing
* Traffic doesn’t need to pass directly from the client to the server
* There can be relays (intermediate nodes) between clients and servers
* There can be multiple servers (TUN IP unigueness problem)

* Relays
e Can be intelligent or simple pass-throughs
* Can redirect traffic directly to servers or hop to 1:N relays
* Unwinding the response is the tricky part (TUN IP to UDP endpoint mappings)

* Advanced
* Hop TTL
* Encrypted client-to-relay, relay-to-relay, and relay-to-server
* Prevent reentrancy

57

==
g
VPN

Packet Sharding

e Can mean two different things:
* Spreading packets across multiple nodes
* Breaking packets up into sub-packet units for network dissemination

* Connection-oriented Protocols
 TUN-IP unigueness problem
 Difficult to shard across N servers
e Exit node termination is tricky

58

Anonymity

2 Different Types of Anonymity
* Clients never send VPN encrypted traffic directly to servers
e Clients never communicate directly to servers

* Different Types of Relays

e Perform point-to-point pass-through

e Perform encryption and point-to-point redirection
* TUN IP Uniqueness

* Clients must be unique to the servers
e Clients must lease a TUN IP address (10.x.y.z)

* True Anonymity
* Achieved via initial out-of-band handshakes between clients and servers
* Achieved via initial out-of-band lease of unique TUN IP
* Future rekeying can be done via ratchetting of the encryption keys

Summary

"It's in that place | put that thing that one time"
— Hackers, The Phantom Phreak

>,

60

——

oo

®

=y Knowledge is Pwnage

* The Internet is a dangerous place

e But it's much safer when we take control

* What are the possible uses of your Hacker VPN?
 What are your ideas?

|

DANGERIII

WiLL ROBINSON

61

——

oo

Potential Concerns

* This workshop is for educational purposes. The Hacker VPN
has been simplified and there are some critical limitations

* Routing vs Packet Filter (aka Kill Switch)
* DNS Leaks

e Simple Session Handling

* Multi-Platform

* CGNAT punching

-\
I LSS S

—1
4T 4

5
DRAGONS

62

Next Steps

* How do | learn how to become an awesome programmer?

* The best way to learn is to do

* Open source communities, online resources, books, etc.

e Remember... you’re hackers... you can do anything!
e Thanks for spending the day with us!

* We hope you’ve enjoyed this DEF CON workshop

e Cave Twink & | do this for you. <3

YEAH, TECH SUPPORT? | THINK
THE SERVER 1S DOWN.

I

OK. I'LL TAKE CARE OF IT.

DON’'T BE DOWN, SERVER.
WE ALL THINK YOU'RE DOING
A GREAT JOB, AND EVERYONE

LIKES YOU.

63

——

OC

®

=
VPN

Check us out...

https://www.codesiren.com

(we’re hiring)

https://www.codesiren.com/

64

——

SXT

®

=¥ References

* https://www.debian.org

* https://gcc.gnu.org

* https://www.boost.org

* https://cmake.org

* https://openssl.org

* https://pg-crystals.org

* https://en.wikipedia.org/wi

ki/Key encapsulation mechanism

* https://en.wikipedia.org/wi

ki/Digital Signhature Algorithm

* https://en.wikipedia.org/wi

ki/Advanced Encryption Standard

https://www.debian.org/
https://www.debian.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.boost.org/
https://www.boost.org/
https://cmake.org/
https://cmake.org/
https://openssl.org/
https://openssl.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://en.wikipedia.org/wiki/Key_encapsulation_mechanism
https://en.wikipedia.org/wiki/Key_encapsulation_mechanism
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

	Slide 1
	Slide 2: Welcome
	Slide 3: Introductions
	Slide 4: Prerequisites
	Slide 5: Workshop Goals
	Slide 6: Exercise: Ice Breaker
	Slide 7: Client Lesson 0
	Slide 8: Lesson Goals
	Slide 9: Wireless Network
	Slide 10: Linux Virtual Machine (VirtualBox)
	Slide 11: Linux Virtual Machine (VirtualBox cont.)
	Slide 12: Linux Virtual Machine (Other)
	Slide 13: Additional Information
	Slide 14: Client Lesson 1
	Slide 15: Lesson Goals
	Slide 16: Lesson Exercise
	Slide 17: Client Lesson 2
	Slide 18: Lesson Goals
	Slide 19: User Datagram Protocol (UDP)
	Slide 20: Lesson Exercise
	Slide 21: Client Lesson 3
	Slide 22: Lesson Goals
	Slide 23: Lesson Exercise
	Slide 24: Client Lesson 4
	Slide 25: Lesson Goals
	Slide 26: Lesson Exercise
	Slide 27: Client Lesson 5
	Slide 28: Lesson Goals
	Slide 29: Transmission Control Protocol (TCP)
	Slide 30: Lesson Exercise
	Slide 31: Client Lesson 6
	Slide 32: Lesson Goals
	Slide 33: Lesson Exercise
	Slide 34: Client Lesson 7
	Slide 35: Lesson Goals
	Slide 36: Lesson Exercise
	Slide 37: Client Lesson 8
	Slide 38: Lesson Goals
	Slide 39: Lesson Exercise
	Slide 40: Client Lesson 9
	Slide 41: Lesson Goals
	Slide 42: Lesson Exercise
	Slide 43: Server Lesson 2
	Slide 44: Lesson Exercise
	Slide 45: Server Lesson 4
	Slide 46: Lesson Exercise
	Slide 47: Server Lesson 5
	Slide 48: Lesson Exercise
	Slide 49: Server Lesson 8
	Slide 50: Lesson Exercise
	Slide 51: Server Lesson 9
	Slide 52: Lesson Exercise
	Slide 53: Advanced Lesson
	Slide 54: Lesson Goals
	Slide 55: Random Noise Injection
	Slide 56: Multi-hop Routing
	Slide 57: Packet Sharding
	Slide 58: Anonymity
	Slide 59: Summary
	Slide 60: Knowledge is Pwnage
	Slide 61: Potential Concerns
	Slide 62: Next Steps
	Slide 63: Check us out…
	Slide 64: References

